DETERMINATION OF ABSCISIC ACID IN *EUCALYPTUS HAEMASTOMA*LEAVES USING GAS CHROMATOGRAPHY/MASS SPECTROMETRY AND DEUTERATED INTERNAL STANDARDS

A. G. NETTING, B. V. MILBORROW and A. M. DUFFIELD*

School of Biochemistry and *School of Physiology and Pharmacology, University of New South Wales, P.O. Box 1, Kensington, N.S.W., Australia

(Received 14 April 1981)

Key Word Index—Eucalyptus haemastoma; Myrtaceae; GC/MS; selected ion monitoring; HPLC; abscisic acid; [3-Me-2H₃]abscisic acid; trans-abscisic acid.

Abstract—Abscisic acid and 2-trans-abscisic acid each with three deuterium atoms in the C-3 methyl group, have been synthesized chemically and used as internal standards in selected ion monitoring experiments to establish the endogeneous concentrations of these compounds and their conjugates in turgid and wilted Eucalyptus haemastoma leaves. The analytical procedure used GC/CIMS(methane) to detect the methyl esters of abscisic acid, 2-trans-abscisic acid and their deuterated internal standards. A three-fold increase in the concentration of abscisic acid occurred on wilting and the amounts of 2-trans-abscisic acid and conjugates of both compounds were determined.

INTRODUCTION

Selected ion monitoring (SIM) in GC/MS is a specific and sensitive technique for measuring low concentrations of natural products when an isotopically labelled internal standard is available. Because the internal standard is added at the beginning of the isolation procedure losses due to lengthy purification steps do not affect the accuracy of the method. This is particularly true for plants such as eucalypts that are rich in terpenoids and phenolics. Thus Summons et al. [1] were able to determine concentrations of cytokinins in radish seeds by using deuterated cytokinins as carriers and internal standards. To determine the endogeneous concentrations of abscisic acid (ABA, 1a) using SIM, we therefore required a chemical synthesis of deuterated ABA in which the isotopic label would be stable to the procedures used for the isolation of endogenous ABA. Although [2H₆] ABA is readily synthesized by exchange [2], its use is restricted since extractions must be carried out below pH 8 [3] and complete retention of the label during storage is in doubt. Consequently, we adopted a procedure based on Walton et al. [4] which introduced three deuterium atoms into the C-3 methyl group of ABA (1b) and this compound was shown to be stable to saponification conditions using alcoholic KOH.

†The recent availability of high sp. act. [G-3H]ABA (Radiochemical Centre, Amersham, U.K.) removes one criticism of the method that relies on labelled internal standards. However, the EC part of the method depends on the GLC peaks being composed entirely of methyl ABA.

Other methods are available for measuring endogenous concentrations of ABA but they are less sensitive or less precise than SIM. Thus, in the racemic dilution method [5] great care must be taken to ensure the purity of the ABA isolated for ORD measurements and at least $1 \mu g$ of (+)-ABA is required. Similarly, the procedure involving the dilution of radioactive ABA [6] becomes increasingly imprecise as a quantitative method as the amount of labelled ABA added exceeds the amount of endogenous material because the ratio between the two is obtained after subtraction of one measurement from the total amount present. This source of error becomes increasingly important when the amount of endogeneous ABA is less than 1 µg. Electron capture detection in GLC is without doubt the most sensitive applicable method, but its precision is limited since internal standards are not available.† However, as little as 100 pg can be precisely measured by SIM.

It has been inferred that in some species of eucalypts ABA is not the major growth inhibitor [7], although its presence has been demonstrated (Loveys, B. R., unpublished). We felt, therefore, that it was important to establish the concentrations, and the effect of wilting on these concentrations, of ABA in eucalypts. Also, we took the opportunity of determining the concentrations of the 2-trans isomer (t-ABA, 2a) and the conjugates of t-ABA and ABA in both turgid and wilted leaves.

RESULTS AND DISCUSSION

The deuterated ABA (1b) and t-ABA (2b) synthesized from deuterated hydroxy keto- α -ionone (3a) by a Wittig reaction [8] had deuterium contents of

73% and 68% [${}^{2}H_{3}$] respectively and were virtualty free of [${}^{2}H_{0}$] content.

The relative intensity of the parent ion, and high mass fragment ions, is low in the EIMS of methyl abscisate. The base peak at m/z 190 has been used for the detection of ABA [9]. As this fragment incorporates the C-3 methyl group [10], it could be used for SIM using EIMS. However, CIMS (methane) yields more intense high mass ions for methyl abscisate and consequently it is the method of choice for a sensitive

Α

100

and specific assay for endogenous ABA. The MH⁺ ion for methyl ABA is a relatively minor peak (10% relative abundance, Fig. 1), while the base peak occurs at m/z 261 [MH – H₂O]⁺, probably from loss of the t-OH group at C-1'. Using this ion of mass 261 in conjunction with [3-Me- 2 H₃]ABA (1b) as an internal standard (m/z 264), detection limits with a signal-to-noise ratio of >10:1, of 100 pg injected onto the GC column, can be obtained. The CIMS (methane) of methyl t-ABA contains MH⁺ as the base peak (Fig.

261 [MH - H₂0]⁴

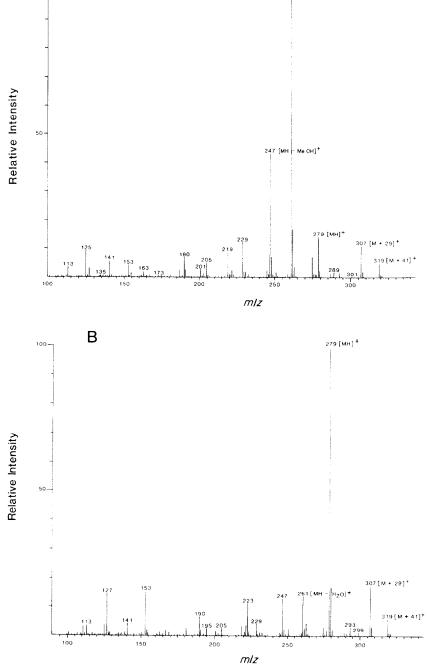


Fig. 1. CIMS (CH₄) of A: ABA (1a) and B: t-ABA (2a).

1). Consequently, this ion (m/z 279) and that at m/z 282 in the internal standard, were monitored for quantitative purposes.

The only previous attempt to use deuterated ABA for SIM analysis of endogenous ABA was carried out by Rivier et al. [11]. These authors used [2H6]ABA which had been prepared by base-catalysed exchange. Besides the disadvantage that this material cannot be used to estimate conjugates released by saponification, considerable effort must be expended to process the standards by the same procedure as the samples to ensure that there is no differential loss of exchangeable deuterium [12]. Treatment of a standard deuterated mixture with strong alkali for 2.25 hr or for 3 days failed to release a significant proportion of deuterium, thereby showing that 1b and 2b were suitable internal standards for the measurement of ABA and t-ABA released from conjugates by alkaline hydrolysis. However, storage of such a standard mixture for 6 months in MeOH at -2° led to some chemical degradation and some randomization of the label.

Any error in estimating the amount of ABA or t-ABA released from conjugates would be introduced by losses of the conjugates during extraction [13, 14] rather than by loss of deuterium from [3-Me-²H₃]ABA. The amounts of the conjugates appear to be high but the recent discovery of ABA-glucoside [15], and the inappropriateness of many extraction procedures, indicate that earlier values will have to be reassessed.

The proposed structure (3b) for the compound formed during the treatment of 3a with base is derived from the following evidence. The CIMS (methane) showed a protonated molecular ion of mass 239, 16 mu greater than 3a. The loss of 86 mu was also observed in the spectrum of 3b and this can be accommodated by the presence of an epoxide in the side-chain of 3b. This was confirmed by ¹H NMR; the protons at C-3 and C-4 in 3b are at δ 3.63 and 3.31, while the equivalent protons in 3a are at δ 6.86 and 6.46. The IR spectrum of 3b lacks one of the two conjugated carbonyl groups present in 3a and absorption bands between 800 and 1310 cm⁻¹ are consistent with the presence of an epoxide function in 3b. The IR spectrum of 3b, unlike 3a, shows intramolecular hydrogen bonding.

The concentrations of ABA, t-ABA and their conjugates in E. haemastoma leaves are given in Table 1. The concentration of ABA is higher in wilted

Table 1. Endogenous concentration (μg/g fr. wt) of ABA, t-ABA and these compounds as conjugates in turgid and wilted E. haemastoma leaves

	Wilted		Turgid	
	Non- conjugated	Conjugated	Non- conjugated	Conjugated
ABA	4.83*	5.1*†	1.30*	4.42
t-ABA	0.22	0.48*	0.25	0.87

*Mean of two determinations on the GC/MS.

†It appears that most of the ABA was lost during extraction and thus this value is based on small peak heights.

leaves than in turgid leaves; consequently, the concentration of ABA in E. haemastoma is affected by water stress. However, the increase on wilting is only three- to four-fold while glasshouse-grown plants such as tomatoes and wheat may show an increase by as much as 40-fold [16]. The unresponsiveness of E. haemastoma may reflect the rigours of the environment rather than any fundamental difference in ABA metabolism. Kriedemann and Loveys [17] found increases of similar degree in several Australian arid zone plants. They found concentrations about onefiftieth of those reported here. The difference may be attributed, at least in part, to losses during isolation. These true endogenous concentrations of ABA in a plant growing under natural conditions are difficult to assess because of the absence of comparable data.

E. haemastoma leaves contain conjugates of ABA at high concentrations and also t-ABA, but the concentration of neither of these fractions is increased on wilting. The effects reported for the 'G' growth regulators of E. grandis [7] may be non-specific, inhibitory effects.

EXPERIMENTAL

Exchange of $1 - \{1' - hydroxy - 4' - oxo - 2', 6', 6' - trimethyl-cyclohex - 2' - enyl\} - 3 - oxobut - 1 - ene (3a) and isolation of the deuterated products. The 3a used was a gift from Hoffman-La Roche. Its synthesis has been documented [8]. The vol. of 0.1 M NaOD required to exchange fully the hydrogens of the side-chain methyl of 3a was determined by <math>^1$ H NMR titration in 0.4 ml p- 1 H $_3$ I-dioxane plus 0.1 ml p- 2 O. When the side-chain Me was completely exchanged the ring methylene was about half exchanged and the solution became pink. After dissolving 3a (100 mg) in dry dioxane

(40 ml) and D₂O (10 ml), Na (43 mg), dissolved in 10.0 ml D₂O, was added and the reaction mixture stirred (20°, 2 hr). The soln was acidified with dry (COOH)₂ to pH 4. H₂O was added and the mixture extracted (×3) with Et₂O and the organic phase evaporated. The residue was dried by passage through a small column containing dry CaSO₄, using dry Et₂O as eluent which was then evaporated. The sample was dissolved in C₆H₆ and applied to a Si column (Merck Lobar A, 240 mm \times 10 mm) and eluted with 5% iso-PrOH in hexane at 38 ml/hr. The two major peaks monitored at 264 nm, which were not well resolved, were collected in one fraction. These two peaks were resolved by HPLC on a 7.8 mm \times 300 mm μ -Porasil column using 5% iso-PrOH in hexane at 4 ml/min (ca 50 kg/cm²) and monitoring at 254 nm. All HPLC equipment was from Waters Associates. Deuterated 3b, RR_i 0.80, yield ca 28 mg. Deuterated 3a, RR_i 1.00, yield 18.87 mg.

Identification of compound 3b. 8.4 mg 3a were exchanged in dioxane/1 M NaOH as described for the preparation of deuterated 3a using 1/10th quantities. Non-deuterated 3b was isolated using the μ -Porasil column as described above. Deuterated 3b (8.3 mg) obtained in the preparation of deuterated 3a, was treated as described for the 8.4 mg of 3a above. 3b was the only significant product isolated on the μ-Porasil column. H NMR and GCMS showed that the deuterium incorporated into 3b (ca 2H5) by exchange, remained exchangeable. UV $\lambda_{max}^{lso-ProH}$ nm (log ϵ): 3b: 232 (3.97); 3a: 236 (4.12); ¹H NMR (A Jeol FX-100 operating at 2.35 T in the Fourier Transform mode was used with TMS as the int. standard. The peaks from 3a were identified using a non-gated double irradiation technique). 3b (CDCl₃): δ 5.98 $(1H, s, 3'-H), 3.63 (1H, d, J_{3,4} = 2 Hz, 3-H), 3.31 (1H, d, 4-H),$ 2.64 (1H, d, $J_{5',5'}$ = 18 Hz, 5'-H), 2.37 (1H, d, 5'-H), 2.16 (3H, s, 1-Me), 2.01 (3H, s, 2'-Me), 1.17 (3H, s, 6'-Me), 1.10 (3H, s, 6'-Me); **3a** (CDCl₃): δ 6.86 (1H, d, $J_{3,4} = 16$ Hz, 3-H), 6.46 (1H, d, 4-H), 5.98 (1H, s, 3'-H), 2.54 (1H, d, $J_{5'.5'} = 16 \text{ Hz}$, 5'-H), 2.32 (1H, d, 5'-H), 2.32 (3H, s, 1-Me), 1.90 (3H, s, 2'-Me), 1.12 (3H, s, 6'-Me), 1.04 (3H, s, 6'-Me); $GC/CIMS(CH_4)$ m/z: **3b**: 239 [MH]⁺, 221 [MH – H₂O]⁺, 165 $[MH - 74]^+$ (base peak), 153 $[MH - 86]^+$, 3a: 223 $[MH]^+$, (base peak), 205 [MH - H_2O]⁺; IR $\nu_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$: 3b: 3460 (br, H bonded-OH), 1740 (> C=O), 1660 (> C=C-C=O), 1310, 1140, 900, 800 (unidentified, differ significantly from 3a); 3a: 3490 (sharp, -OH), 1670 (>C=C-C=O), 1630 (>C=C<). Synthesis and isolation of [3-Me-2H3]ABA (1b) and t-[3-(2b). Carboxyethyltriphenylphosphonium $Me^{-2}H_3]ABA$ bromide (mp 159°, lit. 158°) was synthesized in quantitative yield from triphenylphosphine and ethylbromoacetate [18] using 1/10th quantities. Carboethoxymethylenetriphenylphosphorane was then prepared [18] [mp (recryst) 124°, lit. (not recryst) 116-117°]. Phosphorane (23 mg) was added to deuterated 3a (18.87 mg) in 1.59 ml toluene and the mixture refluxed for 4 hr [8, method A]. The products of the Wittig reaction were separated by HPLC using the μ -Porasil column with the conditions given above. 3a: RR, 1.00, recovered 9.64 mg (51%). Triphenylphosphine oxide, RR, 0.91 (tailing). UV, $\lambda_{\text{max}}^{\text{iso-PrOH}}$ nm: 257, 263, 269; GC/CIMS (CH₄) m/z: 279 [MH]⁺, 201 [MH – C₆H₆]⁺. Et-t-ABA, RR_t 0.41, yield 7.15 mg (29%). UV $\lambda_{\text{max}}^{5\% \text{ iso-PrOH/bexane}}$ nm (log ϵ): 259 (4.328). Et-ABA, RR_t 0.31, yield 4.71 mg (19%). UV $\lambda_{\max}^{5\% iso\text{-PrOH/hexane}}$ nm (log ϵ): 267 (4.326).

Et-ABA and Et-t-ABA were saponified [95% EtOH-60% KOH (2:1), 2 hr, 40°] separately, acidified, extracted (×3) into Et₂O, dried and evaporated.

1b; ¹H NMR (CDCl₃): δ 7.83 (1H, d, J_{5,4} = 16 Hz, 4-H), 6.18 (1H, d, 5-H), 5.98 (1H, s, 3'-H), 5.78 (1H, s, 2-H), 2.54 (1H, d,

 $J_{S',S'} = 18$ Hz, 5'-H), 2.28 (1H, d, 5'-H), 2.03 (trace, s, 3-Me), 1.94 (3H, s, 2'-Me), 1.13 (3H, s, 6'-Me), 1.04 (3H, s, 6'-Me). 2b: 1 H NMR (CDCl₃): δ 6.50 (1H, d, $J_{5,4} = 16$ Hz, 4-H), 6.17 (1H, d, 5-H), 5.96 (1H, s, 3'-H), 5.88 (1H, s, 2-H), 2.52 (1H, d, $J_{S',S'} = 17$ Hz, 5'-H), 2.31 (trace, s, 3-Me), 2.28 (1H, d, 5'-H), 1.91 (3H, s, 2'-Me), 1.12 (3H, s, 6'-Me), 1.03 (3H, s, 6'-Me). The assignments for 2b were confirmed using homonuclear decoupling.

Preparation and quantitation of the internal standard for SIM. The 2b obtained by saponification was isomerized in Me₂CO in sunlight for 5 days and 2b was separated from 1b by HPLC on a C_{18} reversed phase column (7.8 mm \times 300 mm), 95% EtOH-0.2% HOAc (1:3), 4.0 ml/min, 254 nm $(ca 130 \text{ kg/cm}^2)$, RR_i : 1b 1.00, 2b 0.81. This separation afforded 2b which was isomerized in [2H6] Me2CO in sunlight for 2 weeks. The resulting mixture of 1b and 2b was used as the int. standard in the experiments reported here. An aliquot was methylated (CH₂N₂) and the deuterium content in the two peaks determined by GCMS (see below). Aliquots were also treated with saponification mixture (95% EtOH-60% KOH, 2:1) for 2.25 hr and 3 days at room temperature, acidified, extracted (×3) into Et₂O, dried and methylated and the resulting mixtures of Me esters were examined by GC/MS.

A methanolic soln of the mixture of **1b** and **2b** was prepared $(300 \,\mu\text{g/ml})$. An aliquot of the mixture was methylated (CH_2N_2) and analysed by GLC (Pye Unicam, XE-60 1.5 m×4 mm column, N₂ carrier gas split in the detector oven; 1 part to EC and 24 parts to FID): 12.30 μg **1b**, 13.30 μg **2b**, 4.41 μg minor components. The EC gave the same proportions of **1b** to **2b** as the FID.

Plant material. Small leafy branches of E. haemastoma were collected from a tree in bushland at Gordon, N.S.W., Australia. They were brought to the laboratory in clear polythene bags and supported in conical flasks, with or without H_2O , in moving air for 6.5 hr. 'Turgid branches'; initial wt 138.2 g, final wt 146.4 g, % change +6%, wt of leaves 107.1 g; 'wilted branches': initial wt 96.8 g, final wt 89.7 g, % change -7%, wt of leaves 67.2 g.

Extraction. The leaves were detached from the branches and weighed and the int. standard was then added: 'turgid leaves', 0.246 µg [3-Me-2H₃]ABA; 0.266 µg t-[3-Me-2H₃]ABA/g leaves. 'Wilted leaves', 1.230 µg [3-Me-2H₃]ABA; 1.330 µg t-[3-Me-2H₃]ABA/g leaves. The leaves were then homogenized in 200 ml 1% HOAc in Me₂CO and 2,6-di-t-butyl-4-methylphenol (10 mg/l) added prior to storage overnight. The fibrous material was filtered off and rehomogenized and the combined extracts evaporated to the aq. phase. This was extracted (×5) with Et₂O and the aq. residue was retained for subsequent saponification. The combined Et₂O extracts were evaporated and extracted with satd NaHCO₃. After acidification (pH 3.0) the combined extracts were extracted (×3) with Et₂O and evaporated.

A second int. standard $(0.369 \,\mu g \, [3-Me^2H_3]ABA;$ $0.399 \,\mu g \, t$ - $[3-Me^2H_3]ABA/g$ leaves) was added to each of the aq. residues obtained from the 'turgid' and 'wilted' leaves so that the concentrations of ABA and t-ABA conjugates could be estimated. The residues were then saponified $(95\% \, EtOH-60\% \, KOH \, (2:1) \, 40^\circ, \, 2.25 \, hr)$, and acidified with H_2SO_4 . The solid material was filtered off and the filtrate extracted $(\times 3)$ with Et_2O and the combined extracts evaporated.

Chromatography. All four samples (free ABA plus t-ABA from turgid and wilted leaves and from the corresponding saponificates) were firstly applied to small columns made by joining 4 'SepPaks' (10-mm dia. 20-mm plastic columns

containing C_{18} bonded Si-Waters Associates) end to end with capillary glass tubing. The column was eluted with 100 ml of each of: 0.2% HOAc then 95% EtOH-0.2% HOAc (7:13) and finally 95% EtOH. The second fraction was evaporated and the others discarded. The second fractions of the hydrolysed conjugates from turgid and wilted leaves were chromatographed on a Merck Lobar RP-8 column (240 mm \times 10 mm) with 95% EtOH-0.2% HOAc (2:3). The fraction containing ABA and t-ABA was collected by reference to standards because the extracts contained large amounts of brown material.

All four samples were then separated into fractions containing ABA or t-ABA by HPLC on a C_{18} reversed phase column under the conditions given above. Finally, the fractions containing ABA or t-ABA from the reversed phase column were suspended in MeOH, and methylated with CH_2N_2 . The solns were evaporated to dryness, taken up in CH_2Cl_2 , filtered (0.5 μ m Sweeney adaptor-Millipore) and evapd to dryness. These fractions were then chromatographed (HPLC) on the μ -Porasil column, as above, to afford samples for GC/MS that contained either Me-ABA or Me-t-ABA as the major component.

GC/CIMS (CH₄). Analyses were carried out with a Finnigan Model 3200 Chemical Ionization GC/MS system interfaced to the same manufacturer's Incos 2300 Data system. CH₄ (20 ml/min) was used as the GC carrier gas and CI reagent gas (source pressure 0.8 torr). The ion source temperature was maintained at 150° and the interface oven and GC injector at 260°. The column was 3% OV-101 on Gas Chrom Q, 100-120 mesh $(1.8 \text{ m} \times 2 \text{ mm}, \text{ glass})$ and was temp. programmed from 170° at 10°/min. The following deuterium contents were found for the internal standard: Me-ABA; ²H₁, 1.6%; ²H₂, 22.5%; ²H₃, 73.4%; ²H₄, 2.4%. Me-t-ABA; ²H₁, 5.3%; ²H₂, 23.1%; ²H₃, 68.2%; ²H₄, 3.5%. Deuterium contents were not significantly altered by treating the int. standard with saponification mixture at room temp. for 2.25 hr or for 3 days. For selected ion monitoring the following base peaks were used: Me-ABA, m/z = 261; Me-[3- $Me^{-2}H_3$]ABA, m/z = 264; Me-t-ABA, m/z = 279 and Me-t- $[3-Me^{-2}H_3]ABA$, m/z = 282.

Aliquots of the Me-ABA and the Me-t-ABA samples collected from the μ -Porasil column were injected into the GC/MS and the ratios of the peak heights of the appropriate ions recorded. Standards were prepared by mixing unlabelled ABA plus t-ABA with constant amounts of the int. standard and then methylating the mixture with CH₂N₂. The standard curves so prepared were linear over the ranges used [Me-ABA: peak height = 1.307 2 H₀/ 2 H₃ + 0.529 (correlation coeff. = 0.9986); Me-t-ABA: peak height = 1.913

 ${}^{2}H_{0}/{}^{2}H_{3} + 0.259$ (correlation coeff. = 0.9990)]. The concentrations and total amounts of ABA and t-ABA in E. haemastoma leaves were then calculated.

Acknowledgements—We are indebted to Drs. J. Würsch and W. Oberhänsli, F. Hoffmann, La Roche and Co., Basle, for providing us with a sample of 3a, and to Mr. G. Grossman for the ¹H NMR spectra. The research was funded by the Australian Research Grants Committee, grant no. D.27615178.

REFERENCES

- Summons, R. E., MacLeod, J. K., Parker, C. W. and Letham, D. S. (1977) FEBS Letters 82, 211.
- 2. Milborrow, B. V. (1969) Chem. Commun. 966.
- Milborrow, B. V. (1971) in Aspects of Terpenoid Chemistry and Biochemistry (Goodwin, T. W., ed.) pp. 137–151. Academic Press, New York.
- 4. Walton, D., Wellner, R. and Horgan, R. (1977) Phytochemistry 16, 1059.
- 5. Milborrow, B. V. (1967) Planta 76, 93.
- Milborrow, B. V. and Robinson, D. R. (1973) J. Exp. Botany 24, 537.
- Paton, D. M., Dhawan, A. K. and Willing, R. R. (1980) Plant Physiol. 66, 254.
- Roberts, D. L., Heckman, R. A., Hege, B. P. and Bellin,
 S. A. (1968) J. Org. Chem. 33, 3566.
- Railton, I. D., Reid, D. M., Gaskin, P. and MacMillan, J. (1974) Planta 117, 179.
- Grey, R. T., Mallaby, R., Ryback, R. and Williams, V. P. (1974) J. Chem. Soc. Perkin Trans. 2, 919.
- Rivier, L., Milon, H. and Pilet, P.-E. (1977) Planta 134, 23.
- 12. Duffield, P. H., Birkett, D. J., Wade, D. N. and Duffield, A. M. (1979) Biomed. Mass Spectrom. 6, 101.
- Milborrow, B. V. and Mallaby, R. (1975) J. Exp. Botany 26, 741.
- 14. Zeevart, J. A. D. (1980) in *Plant Growth Substances*, 1979 (Skoog, F., ed.). Springer, Berlin.
- 15. Loveys, B. R. and Milborrow, B. V. Aust. J. Plant Physiol. (in press).
- Wright, S. T. C. and Hiron, R. W. P. (1969) Nature (Lond.) 224, 719.
- Kriedemann, P. E. and Loveys, B. R. (1974) in Mechanisms of Regulation of Plant Growth (Bieleski, R. L., Ferguson, A. R. and Cresswell, M. M., eds.). Royal Society of New Zealand, Wellington.
- Isler, O., Gutmann, H., Montavon, M., Rüegg, R., Ryser, G. and Zeller, P. (1957) Helv. Chim. Acta 40, 1242.